Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Hierarchical segmentation of pathological images based on self-supervised learning
WU Chongshu, LIN Lin, XUE Yunjing, SHI Peng
Journal of Computer Applications    2020, 40 (6): 1856-1862.   DOI: 10.11772/j.issn.1001-9081.2019101863
Abstract838)      PDF (2378KB)(705)       Save
The uneven distribution of cell staining and the diversity of tissue morphologies bring challenges to the automatic segmentation of Hematoxylin-Eosin (HE) stained pathological images. In order to solve the problem, a three-step hierarchical segmentation method of pathological images based on self-supervised learning was proposed to automatically segment the tissues in the pathological images layer-by-layer from coarse to fine. Firstly, feature selection was performed in the RGB color space based on the calculation result of mutual information. Secondly, the image was initially segmented into stable and fuzzy color regions of each tissue structure based on K -means clustering. Thirdly, the stable color regions were taken as training datasets for further segmentation of fuzzy color regions by naive Bayesian classification, and the three complete tissue structures including nucleus, cytoplasm and extracellular space were obtained. Finally, precise boundaries between nuclei were obtained by performing the mixed watershed classification considering both shape and color intensities to the nucleus part, so as to quantitatively calculate the indicators such as the number of nuclei, nucleus proportion, and nucleus-cytoplasm ratio. Experimental results of HE stained meningioma pathological image segmentation show that, the proposed method is highly robust to the difference of staining and cell morphologies, the error of issue area segmentation is within 5%, and the average accuracy of the proposed method in nucleus segmentation accuracy experiment is above 96%, which means that the proposed method can meet the requirements of automatic analysis of clinical images and its quantitative results can provide references for quantitative pathological analysis.
Reference | Related Articles | Metrics